- Title
- The range of the gradient of a Lipschitz C¹-smooth bump in infinite dimensions
- Creator
- Borwein, J. M.; Fabian, F.; Loewen, P. D.
- Relation
- Israel Journal of Mathematics Vol. 132, Issue 1, p. 239-251
- Publisher Link
- http://dx.doi.org/10.1007/BF02784514
- Publisher
- Magnes Press
- Resource Type
- journal article
- Date
- 2002
- Description
- If a Banach space has a Lipschitz C¹-smooth bump function, then it admits other bumps of the same smoothness whose gradients exactly fill the dual unit ball and other reasonable figures. This strengthens a result of Azagra and Deville who were able to cover the dual unit ball.
- Subject
- Lipschitz function; Banach spaces; C¹-smooth bump; infinite dimensions
- Identifier
- http://hdl.handle.net/1959.13/940669
- Identifier
- uon:13071
- Identifier
- ISSN:0021-2172
- Language
- eng
- Reviewed
- Hits: 2200
- Visitors: 2632
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|